YK 004.492

Application of high-performance calculations for the solution of
cryptography problems

Baimuldina N. S.
candidate of pedagogical sciences,
associate professor of the department of Informaton Systems,
Al-Farabi Kazakh National University, al-Farabi av., 71,
tel+7 (727)7472926058 e-mail: baimuldinanaziko@mail.ru
Baisholanova K.S
doctors of economic of economic sciences,
associate professor of the department of Informaton Systems,
Al-Farabi Kazakh National University, al-Farabi av., 71,
tel+7 (727)7026159530 e-mail: karlygash.baisholanova@kaznu.kz
Maksutova B.A,
senior teacher of the department computer science
Al-Farabi Kazakh National University, Kazakhstan, Almaty.
bam.bota@mail.ru,
Baitenova S.A.
senior teacher of the department computer science
Al-Farabi Kazakh National University, Kazakhstan, Almaty.
sbaitenova@mail.ru
Zakariyanova N.B.
senior teacher of the department Informatics and Informatization of Education
Abai Kazakh National Pedagogical University, Kazakhstan, Almaty

ABSTRACT

This paper addresses the issues is a Cryptography and Information security. Their
implementation on C++ programing language and comparison of work. As nowadays most of
services becomes electronic, bank needs to store information in electronic format, provide online
transaction, all online card service providers host online transaction numerous number of times.
There should be a way to safely store such information and despite of granting access of 3" parties
this information should be not deciphered. Cryptographic Algorithms can solve this issues. Their
main function is to convert given information which is plaintext(usually it is the entire form of data,
e.g. password) to sequence of character which are completely differs from entire data.

Keywords: Cryptography, information security, encryption algorithm, Microsoft Visual
Studio 2013, C++, Key.

1.INTRODUCTION

Computer systems need to store user passwords somewhere. However, storing passwords in
plaintext is never recommended, as an attacker could simply find the password file and thus have
access to all passwords stored on the machine! Therefore, passwords are first encrypted using
strong crypto hash functions. Given a generated crypto hash, it is hard to crack the hash to generate
the original plaintext. Therefore they are the natural solution to password storage. Though there are
tools to recover passwords from crypto hashes, most of them are sequential and CPU based. As
passwords get more complex, these CPU based solutions fail to recover passwords in a reasonable
amount of time. Indeed it can take hours or days to recover a password as simple as on some

1

mailto:baimuldinanaziko@mail.ru

implementations. | decided to make such a password recovery tool for the MD5 hash using CUDA
to see if we could do any better.

As nowadays most of services becomes electronic, bank needs to store information in
electronic format, provide online transaction, all online card service providers host online
transaction numerous number of times. There should be a way to safely store such information and
despite of granting access of 3" parties this information should be not deciphered. Cryptographic
Algorithms can solve this issues. Their main function is to convert given information which is [1]
Plaintext (usually it is the entire form of data, e.g. password) to sequence of character which are
completely differs from entire data. This enciphered data can be stored in database, host server and
if a 3" party entity will gain access to this data, he will not be able to recover it back to entire form,
as he don’t know if the data he gained access to is enciphered by hashing Algorithm, encryption
Algorithm. The end result of Encryption Algorithm (how data looks after Encryption) differs from
other similar Algorithms, Hashing function results due to appliance of different computation blocks,
formulas. And mostly the 3" party entity must therefore to detect what enciphering Algorithm was
used on server, it requires testing of sample data by numerous enciphering Algorithms and Key’s
which is almost impossible. And nowadays the presence of Encryption in any computer system
(application/site/server) is an important feature to distribute and use this system in real life. And
currently despite of appliance of any computer system or application the embedding of Encryption
Algorithm is a vital part.

Usually the most of online attacks are intended on web servers/e-commerce sites as mostly
the transmitting packets are not enciphered, it’s easy to deploy not authentic links with forms for
entering credit card numbers, data to collect such information. [1]

This cyber attacks intended on collection of data are costly, as in USA at 2014 the loss of E-
commerce market was reached up to 20.8 million $. In Kazakhstan, according to official sources for
the year 2016, this value climbed to 12 billion 348 million tenge.

As most of users are still uses ‘dictionary’ passwords, weak passwords (password that
contains similar characters) the deciphering of stolen database are becoming time efficient, since the
sample data are covered from dictionary and it minimize the time of hacker needed to decipher data.
The target of hackers are considered mostly on credit card information, due to easy deployment of
not genuine web forms for collecting password, presence of E - commerce sites with disabled
enciphering software Considering all above the Implementation and further deployment of
Encryption Algorithms becoming more vital and actual for every type of application or web service.

The project area is a Cryptography and Information security. As nowadays most of services
becomes electronic, bank needs to store information in electronic format, provide online
transaction, all online card service providers host online transaction numerous number of times.
There should be a way to safely store such information and despite of granting access of 3rd parties
this information should be not deciphered. Cryptographic Algorithms can solve this issues. Their
main function is to convert given information which is Plaintext(usually it is the entire form of data,
e.g. password) to sequence of character which are completely differs from entire data. This
enciphered data can be stored in database, host server and if a 3rd party entity will gain access to
this data, he will not be able to recover it back to entire form, as he don’t know if the data he gained
access to is enciphered by hashing Algorithm, encryption Algorithm. The end result of Encryption
Algorithm (how data looks after Encryption) differs from other similar Algorithms, Hashing
function results due to appliance of different computation blocks, formulas. And mostly the 3rd
party entity must therefore to detect what enciphering Algorithm was used on server, it requires
testing of sample data by numerous enciphering Algorithms and Key’s which is almost impossible.
And nowadays the presence of Encryption in any computer system (application/site/server) is an
important feature to distribute and use this system in real life. And currently despite of appliance of
any computer system or application the embedding of Encryption Algorithm is a vital part. The aim
of diploma work to specify the set of most secure Encryption Algorithm and Implement them in
Microsoft Visual Studio environment on C# Programming language. Someone will say that
presence of secured network, private VPN are already enough to provide security from 3rd parties

2

entities.But what if this level of securities are already bypassed on network layers, the core
importance to provide security on application layer and make information visible only by certain
authorized entities. Usually the most of online attacks are intended on web servers/e-commerce sites
as mostly the transmitting packets are not enciphered, it’s easy to deploy not authentic links with
forms for entering credit card numbers, data to collect such information. This cyber attacks intended
on collection of data are costly, as in USA at 2014 the loss of E-commerce market was reached up
to 20.8 million $. [1] As most of users are still uses ‘dictionary’ passwords, weak
passwords(password that contains similar characters) the deciphering of stolen database are
becoming time efficient, since the sample data are covered from dictionary and it minimize the time
of hacker needed to decipher data. The target of hackers are considered mostly on credit card
information, due to easy deployment of not genuine web forms for collecting password, presence of
e-commerce sites with disabled enciphering software. Therefore between October and May of
2013-2014 a 350000 card information and log in information of 233 million customers of online
retail sector in USA was stolen. [1] Considering all above the Implementation and further
deployment of Encryption Algorithms becoming more vital and actual for every type of application
or web service.

2. MD5 ALGORITHM

In MD5, the input message is broken up into chunks of 512-bit blocks (each with sixteen 32-
bit sub-blocks). After a series of operations, MD5 produces a 128-bit message digest with four
concatenated 32-bit blocks for the integrity of a _le. To compute the digest of a message, padding
bits are appended first to make the messages length congruent to 448, modulo 512, and then the
length bits. A 64-bit portion is appended to indicate the length of the actual message. MD5
algorithm operates on a 128-bit state which is divided into four 32-bit words (denoted as A, B, C
and D) and initialized. Each 512-bit message block is applied in turn to modify the state. The
processing of a message block consists of four similar rounds, each of which is composed of 16
similar operations based on a non-linear function F, modular, addition, and left rotation. At last,
MD5s output is produced by cascading A, B, C and D after the final round.

CUDA Programming Model CUDA (Compute Unified Device Architecture) [4] is a GPGPU
technology (General Purpose Computing on Graphics Processing Units). Instead of executing an
application exclusively on the central processor (CPU), some computational intensive parts of the
application can be transferred to the graphic processor (GPU). Using the GPU for high performance
computing has been in practice for years already, but the lack of a suitable APl made it a
painstaking experience for the programmer, formulating his ideas in an API designed for pure
graphics programming. In contrast, CUDA uses as API an extension of C or Fortran, which makes
general-purpose programming on the GPU a lot easier. However, to program the GPU efficiently, a
good knowledge of the internal workings of the GPU is still necessary. Some NVIDIA GPU
Internals. An extensive description of hardware details of NVIDIA GPUs can be found at [14, 15],
and we will restate some of the main points here in the context of the GPU model used for this
paper, the GTX 295. But even for the new GPU architecture, called Fermi, the description will be
adequate. At the highest level, the GPU consists of a number of so-called streaming multiprocessors
(SM). Each SM contains a fixed number of so-called streaming International Journal of Security
and Its The GPU supports hardware-multithreading: a stalled thread waiting for data can be quickly
replaced by another thread in exactly one processor (SP) cycle. The threads are organized in bigger
units, so-called warps, which typically consist of 32 threads. Warps are the units which are actually
scheduled on an SM. They are in turn organized in blocks (cooperative thread arrays (CTAS)) of
typical sizes of 128 up to 256 threads or 4 to 8 warps. Threads belonging to the same CTA can
communicate via a special and very fast memory area called shared memory. There is no way for
the CTAs themselves to communicate: CUDA requires the thread blocks to be independent to allow
them to be executed in any order, which leads to portability and scalability of CUDA programs.
Using shared memory is in theory as fast as using registers. In practice, some care is advisable,

3

though. Shared memory is composed of DRAM: each read or write operation has to be followed by
a refresh cycle. To allow for maximal parallelism, shared memory is therefore built up of so-called
memory banks. As long as different threads of a warp (more exactly, of a half-warp) access
different memory banks, there is no problem. Otherwise so-called bank conflicts occur, leading to a
contention situation, which reduces performance. Another important fact for the GPU
implementation is that threads in the same warp are always synchronized. That means that data
written to shared memory by the threads of a warp are visible to all threads in the warp in the next
computational step. Finally, the code to be executed on the GPU is called a kernel. It is a C (or
Fortran) function which has to be called on the CPU. With older GPU models only one kernel can
be active on the GPU at the same moment.

CPU GPU Device
1 "_"_""":T
CopyanCFU Man | farrin | &
ferin ! FemelGnd
! Block1
W% Hash lgariten GF Memmary BLOCK 2
| s h valie BLCEk
Exesifoe BYCPU 1

Exstule Paralley

rmrmm:lm:

afler complete <

Dicglay Tima Rsquined {IIL_]
[Iizpla Time Ragurad
Dlisplay Gragh

Figure 1 - MD5 System Architecture

=
|

There are four steps in parallelized hybrid MD5 encryption algorithm. First, key initialization
and expansion are accomplished by MD5 key encryption module and key expansion module in Host
(CPU). Thus the hashed and expanded new key is prepared and ready for the initialization
procedure. Second, initialization procedure generates Sub-keys, which is also operated by the host
(CPU). Third, Sub-keys and input data objects (a number of input data blocks) are copied into GPU
Memory. Encryption Module is coded as CUDA kernel functions to encrypt the input message and
generate outputs (encrypted message) on GPU. Finally, the encrypted message is copied back to the
host and delivered to users as shown in figure 1.

In this report discuss the efficiency of parallel implementations of selected password recovery
algorithms. The only reasonable technique for recovering a password from hash is to scan all
potential password, compute their hash, and test the coincidence. In general, cryptographic hash
functions include integer and binary operations such as: addition modulo power of two, bit shift and
rotation, bitwise xor, bitwise or, bit negation and words permutation. All those operations are
natively supported by GPU processors. Multiple tests were performed for parallel implementations
of password recovery from MD5, SHA-1.The aim of the first series of tests was to compare the
performance achieved by Intel core i3 central processing units (CPU).Then multiple tests were
performed for password recovery algorithms. The performance of CPU-based and GPU-based
versions of MD5, SHA-1, and hash techniques for hashes generation was evaluated. The multi-

4

threaded implementations of the MD5 and SHA-1 were executed on GPU, each composed on
Nvidia GPU. Then compare the performance of CPU-based and GPU-based algorithms for
password recovery. Two techniques for hash generation were considered: MD5 and SHA-1. The
number of hashes generated per second running MD5 and SHA-1 algorithms by CPU and NVIDIA
Gforce740m are presented in chart 2 and chart 7 respectively

MD5 CPU & GPU

T brwnse | i

— 5
Ingll LEngih

Figure 2 - MD5 Algorithm Results
3. Hash algorithms work

Since the overall contents of a server that can validate passwords are necessarily sufficient to
indeed validate passwords, an attacker who obtained a read-only snapshot of the server is in
position to make an offline dictionary attack: he tries potential passwords until a match is found.
This is unavoidable. So we want to make that kind of attack as hard as possible. Our tools are the
following:

Cryptographic hash functions: these are fascinating mathematical objects which everybody
can compute efficiently, and yet nobody knows how to invert them. This looks good for our
problem - the server could store a hash of a password; when presented with a putative password, the
server just has to hash it to see if it gets the same value; and yet, knowing the hash does not reveal
the password itself.

Salts: among the advantages of the attacker over the defender is parallelism. The attacker
usually grabs a whole list of hashed passwords, and is interested in breaking as many of them as
possible. He may try to attack several in parallels. For instance, the attacker may consider one
potential password, hash it, and then compare the value with 100 hashed passwords; this means that
the attacker shares the cost of hashing over several attacked passwords. A similar optimisation is
precomputed tables, including rainbow tables; this is still parallelism, with a space-time change of
coordinates.

The common characteristic of all attacks which use parallelism is that they work over several
passwords which were processed with the exact same hash function. Salting is about using not one
hash function, but a lot of distinct hash functions; ideally, each instance of password hashing should
use its own hash function. A salt is a way to select a specific hash function among a big family of
hash functions. Properly applied salts will completely thwart parallel attacks (including rainbow
tables).

Slowness: computers become faster over time (Gordon Moore, co-founder of Intel, theorized
it in his famous law). Human brains do not. This means that attackers can "try" more and more
potential passwords as years pass, while users cannot remember more and more complex passwords
(or flatly refuse to). To counter that trend, we can make hashing inherently slow by defining the
hash function to use a lot of internal iterations (thousands, possibly millions).

We have a few standard cryptographic hash functions; the most famous are MD5 and the
SHA family. Building a secure hash function out of elementary operations is far from easy. When
cryptographers want to do that, they think hard, then harder, and organize a tournament where the
functions Figureht each other fiercely. When hundreds of cryptographers gnawed and scraped and
punched at a function for several years and found nothing bad to say about it, then they begin to
admit that maybe that specific function could be considered as more or less secure. This is just what
happened in the SHA-3 competition. We have to use this way of designing hash function because
we know no better way. Mathematically, we do not know if secure hash functions actually exist; we
just have "candidates" (that's the difference between "it cannot be broken™ and “"nobody in the world
knows how to break it").

A basic hash function, even if secure as a hash function, is not appropriate for password
hashing, because:

- it is unsalted, allowing for parallel attacks (rainbow tables for MD5 or SHA-1 can be
obtained for free, you do not even need to recompute them yourself);

- it is way too fast, and gets faster with technological advances. With a recent GPU (i.e. off-
the-shelf consumer product which everybody can buy), hashing rate is counted in billions of
passwords per second.

So we need something better. It so happens that slapping together a hash function and a salt,
and iterating it, is not easier to do than designing a hash function -- at least, if you want the result to
be secure. There again, you have to rely on standard constructions which have survived the
continuous onslaught of vindicative cryptographers.

System Input Form Design and Sample Input This is the dialog box that enables users to
encode their files and thus specify how data are entered into the system. Figure 3. shows the input
dialog form.

File MD5

Add Res Save Calculat

Figure 3 - Input Form

The input process entails the user to browse for the file to be hash and to also verify if it is the
actual file selected. The user simply click “Browse for the Hash file” and then click “verify” as
shown in Figure 4.

Browse faor the Hash

s/ Source Source Target

Target Target File

Figure 4- Sample System Input

The System Output Design and Sample Form Similarly, another interface is design to display
the result of the verification exercise, which comprises of the name of the source file, source/initial
hashes, targeted/new hashes and status of the verification (Figurel) The output generated by the
system based on the input of Figure 1 is shown in Figure 5.

Figure 5 - Output Form

Sample System Output Development tools Utilized The data integrity checking system was
developed using several technologies which are technically sufficient to build a reliable and well-
maintained platform. Below are the tools that were utilized:

- Microsoft visual studio2010: is an integrated development environment (IDE) from
Microsoft. It is used to develop console and graphical user interface applications along with
Windows Forms applications, web sites, web applications, and

- web services in both native code together with managed code for all platforms supported by
Microsoft Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact
Framework and Microsoft Silver light.

System Requirements The major requirements for the successful implementation and
operation of the system are listed below:

- Pentium 4 processor or higher

- 1 gb RAM or higher

- .Net Framework 3.5 or higher

- USB 2.0 port or higher User Operational Manual for the Data integrity checking system
guides the user on how he/she will go about using the Software. Details Once the software is
launched from desktop The Main/Welcome Screen appears on screen. The Graphical User Interface
(GUI) of the main screen has the following: [1] Checksum Generator Button — when clicked, it
enables the user to insert the file(s) that will be hashed [2] Verification interface Button — On
clicking this button, the verification interface is open, where two button are made available for the
user, the browse button and verify button. on clicking the browse button, a window is open for the
user to choose the desired hash file for comparison. After selecting the hash files, verify button is
clicked which execute the comparison and display the result. [3] Exit Button — This button exit the
interface once clicked.

Ensuring the integrity of files transferred from one department/unit to the other has been a
major concern in most organizations, institutions, businesses and industries today. Hard copies of
documents are carried manually from one department to another within the same organisation. Even
with the advent of electronic mails, security of document is left in the hands of the owner of such
document. In most situation, the security provided by the network architecture in cases of electronic
mails may not be enough to ensure a secured transmission of document. It is even worst when the
medium of manual. MD5 is one among various algorithms that can be used to implement a system
that will ensure the integrity of document being transferred over a connection from one
department/unit to the other.This research therefore focuses on the design of software that utilises
the concept of the MD5 algorithm to overcome the problems of document management of the above
institution of higher learning. The system is composed of two modules with two different
functionalities. The first module is called the Hash Generation module, which is responsible for
hashing a file (generate the checksums/hashes of the file) before sending it. The second module,
which is called the Verification Module, receives the encrypted file, performs the verification
function; and make comparison between the source file and the target file and a status report is
generated at the end of the comparison, which determine whether what was actually sent has been
received without any alteration or modification. In no small way, the system has actually be helpful
to the institution since its implementation.

4 USED TECHNOLOGIES

Enciphering Algorithms was built on Microsoft Visual Studio 2013 Express as a console
application in C++ Programming language.

4.1 Microsoft Visual Studio 2013 Express

Microsoft Visual Studio 2013 Express is Integrated Development Environment (IDE) for
C++/C++ programming language. The key features of Microsoft Visual Studio 2013 is the work
with widget elements as the Qt (IDE) from Nokia which works only with C++ Programming
language, Microsoft Visual Studio 2013 Express supports more Programming languages and build
options (PC, Windows Phone, Tablets) all corresponding widgets can work both on mobile devices
and PC’s which reduces the time needed for porting application on another platform. And what
most important is that end user will not need to spend time on knowing new interface, widgets as
application will be look graphically similarly as on PC. Also the Microsoft Visual Studio 2013
allows to quickly port console to form application with minimum time spent on Code changes. The
running instance of program can be deployed on any CPU (if the work conducted on multi core
CPU), optimized debugger (which allows to see the state of all register, their contents at the time of
interrupt occurs, with out coding additional function for returning state of all variables) due to this
debugger it is possible to quickly reveal and destroy occurred error. The running instance of
program runs in the same window as the code there is no needs to write separate comments for
compiling the instance of program. Execution of program starts in the same window as the code.
This features allows to concentrate on code. Also the inside benchmarking tools can analyse the
running time of program and to see how much of memory is being allocated to running instance.
The most important advantage of Microsoft Visual Studio IDE is the improved emphasizing options
in code editor which is allowing to enclose unneeded functions, classes for faster and convenient
navigation. And the major advantage is that Microsoft Visual Studio Express IDE is free. Such
flexibility was the core factor in selecting IDE for code.

4.2 C++ Programming languages

Unlike as Python, C++, Java C++ out of box intended to use with Byte variables. All Byte
variables can be viewed as in HEX format, Decimal format without calling massive functions
requiring manual conversion. The availability of Byte Converting function (Decimal to Binary,
Hexadecimal to Binary, etc.) was the major fact in selecting programming language. Also C++ have
built in native function for Binary operators (& AND, || OR, A XOR, ~ Inversion). This was
important as all Enciphering Algorithms are intended to work with Byte data, C++ built in functions

for converting between data types allowed to minimize time needed for implementation of
Algorithm and concentrate development time on Methods, Key logic.

5.CONCLUSION

Overall the project was a success. We were able to create an application that can recover most
passwords from an MD5-hashed value with ease. Our hash generation rate is extremely close to the
professional standard, and we can recover not only most passwords today, but also passwords that
will be used in the future that follow well-known patterns. Even for completely random passwords,
we were successfully able to come up with a brute force solution that can recover passwords up to a
certain length in a reasonable amount of time. Our only regret is that we were not eligible for the
iPad.

Conclusively, the developed system would solve the associated problems with the
traditional/manual system. Delay and time consumption will surely be eliminated with the
documents being sent over a secure network connection, and an effective & efficient integrity
checking system that will guaranty the authenticity of the received document.Similarly, with the
successful implementation of this system, confidentiality of messages will definitely be maintained
as only authorised personnel of an organization can have access to their systems, unlike the manual
system in which junior staffs are charged with the responsibility of delivering mails in the physical
sense, so this makes it more prone for the message to be exposed to an outsider who does not have
the authority of seen such a confidential message. The prototype of this system has been tasted with
different forms of data and it is achieved that the system successfully generates hashes/checksums
of a given data, stores them and also performs the verification test and finally give a status report
about the message.

The main work was conducted on defining the set of most complicated and Cryptography
endurance Encryption Algorithm. Analysing the speed of Algorithms, analysis of it’s function and
enciphering methods. Comparing their major difference and implementing them in correct order to
get matching test vectors. A final work is implemented Enciphering Algorithms written on C#
Programming Language in console application format, which provides output of all register states,
round outputs. Optionally | suggest that by Graph Algorithms it is possible to mix Byte order in
Ciphertext, so that even a 3™ party entity would get the Ciphertext, he would be not able to decipher
the Ciphertext by selection method (first trying to start decipher Ciphertext by Key
0x00000000000000000000000000000000 and up to OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
until all combination have been looked. But even thought if even a right Key will be recovered the
original Plaintext would be not seen, because the Byte order was mixed. In example of Serpent Non
Bitslice Encryption Algorithm

Table 1.50 Enciphering test sample of Serpent Encryption Algorithm Non-bitslice

Plaintext Key Ciphertext Result
0x0b1516f9050b0c62627 | 0x657377b5c9d2d7fb798 | Oxa39ec6c8 Pass
98dbe5b6163bf d97bf65737779bfcOc7ca | 242efacf
696f70776579bfcOf9fbfc | e769eaee
ff 6ba5ff19

We see that Ciphertext is 0xa39ec6c8242efacfe769eaee6ba5ff19, and it should be exact the
same for successful Decryption. So of course we can get a random numbers to mix the Ciphertext,
but in terms of the problem we can use the path (traversal path output of BFS/DFS Algorithms,
Shortest path of Dijkstra Algorithm, etc.) to mix Byte order.

For example if a traversal path of BFS/DFS Algorithm is 1,5,7,8,9 and Ciphertext is
Oxa39ec6c8242efacfe769eace6basSff19, that means that Byte 1 will be on it’s position, Byte 5 will
move on 2" position, Byte 7 will move on 3" position, etc. In general we just swapping Bytes by
its positions and finally I get this new mixed Ciphertext Oxa324facfe72ec6c89e69eaee6ba5ff19. It is

considerably differs from original Ciphertext, giving zero chance for Deciphering it by 3™ party
entity.

Their implementation on C# programing language and comparison of work. As nowadays
most of services becomes electronic, bank needs to store information in electronic format, provide
online transaction, all online card service providers host online transaction numerous number of
times. There should be a way to safely store such information and despite of granting access of 3rd
parties this information should be not deciphered. Cryptographic Algorithms can solve this issues.
Their main function is to convert given information which is Plaintext(usually it is the entire form
of data, e.g. password) to sequence of character which are completely differs from entire data. The
project area is a Cryptography and Information security. As nowadays most of services becomes
electronic, bank needs to store information in electronic format, provide online transaction, all
online card service providers host online transaction numerous number of times. There should be a
way to safely store such information and despite of granting access of 3™ parties this information
should be not deciphered. Cryptographic Algorithms can solve this issues. Their main function is to
convert given information which is Plaintext(usually it is the entire form of data, e.g. password) to
sequence of character which are completely differs from entire data. This enciphered data can be
stored in database, host server and if a 3™ party entity will gain access to this data, he will not be
able to recover it back to entire form, as he don’t know if the data he gained access to is enciphered
by hashing Algorithm, encryption Algorithm. The end result of Encryption Algorithm (how data
looks after Encryption) differs from other similar Algorithms, Hashing function results due to
appliance of different computation blocks, formulas. And mostly the 3™ party entity must therefore
to detect what enciphering Algorithm was used on server, it requires testing of sample data by
numerous enciphering Algorithms and Key’s which is almost impossible. And nowadays the
presence of Encryption in any computer system (application/site/server) is an important feature to
distribute and use this system in real life. And currently despite of appliance of any computer
system or application the embedding of Encryption Algorithm is a vital part. The aim of diploma
work to specify the set of most secure Encryption Algorithm and Implement them in Microsoft
Visual Studio environment on C# Programming language. Someone will say that presence of
secured network, private VPN are already enough to provide security from 3" parties entities.But
what if this level of securities are already bypassed on network layers, the core importance to
provide security on application layer and make information visible only by certain authorized
entities. Usually the most of online attacks are intended on web servers/e-commerce sites as mostly
the transmitting packets are not enciphered, it’s easy to deploy not authentic links with forms for
entering credit card numbers, data to collect such information. This cyber attacks intended on
collection of data are costly, as in USA at 2014 the loss of E-commerce market was reached up to
20.8 million $. [1] As most of users are still uses ‘dictionary’ passwords, weak passwords(password
that contains similar characters) the deciphering of stolen database are becoming time efficient,
since the sample data are covered from dictionary and it minimize the time of hacker needed to
decipher data. The target of hackers are considered mostly on credit card information, due to easy
deployment of not genuine web forms for collecting password, presence of e-commerce sites with
disabled enciphering software. Therefore between October and May of 2013-2014 a 350000 card
information and log in information of 233 million customers of online retail sector in USA was
stolen. [1] Considering all above the Implementation and further deployment of Encryption
Algorithms becoming more vital and actual for every type of application or web service.

The project area is a Cryptography and Information security. As nowadays most of services
becomes electronic, bank needs to store information in electronic format, provide online
transaction, all online card service providers host online transaction numerous number of times.
There should be a way to safely store such information and despite of granting access of 3" parties
this information should be not deciphered. Cryptographic Algorithms can solve this issues. Their
main function is to convert given information which is [1] Plaintext (usually it is the entire form of
data, e.g. password) to sequence of character which are completely differs from entire data. This
enciphered data can be stored in database, host server and if a 3™ party entity will gain access to this

10

data, he will not be able to recover it back to entire form, as he don’t know if the data he gained
access to is enciphered by hashing Algorithm, encryption Algorithm. The end result of Encryption
Algorithm (how data looks after Encryption) differs from other similar Algorithms, Hashing
function results due to appliance of different computation blocks, formulas. And mostly the 3™
party entity must therefore to detect what enciphering Algorithm was used on server, it requires
testing of sample data by numerous enciphering Algorithms and Key’s which is almost impossible.
And nowadays the presence of Encryption in any computer system (application/site/server) is an
important feature to distribute and use this system in real life. And currently despite of appliance of
any computer system or application the embedding of Encryption Algorithm is a vital part.

Usually the most of online attacks are intended on web servers/e-commerce sites as mostly
the transmitting packets are not enciphered, it’s easy to deploy not authentic links with forms for
entering credit card numbers, data to collect such information. [2]

This cyber attacks intended on collection of data are costly, as in USA at 2014 the loss of E-
commerce market was reached up to 20.8 million $. In Kazakhstan, according to official sources for
the year 2016, this value climbed to 12 billion 348 million tenge.

As most of users are still uses ‘dictionary’ passwords, weak passwords (password that
contains similar characters) the deciphering of stolen database are becoming time efficient, since the
sample data are covered from dictionary and it minimize the time of hacker needed to decipher data.
The target of hackers are considered mostly on credit card information, due to easy deployment of
not genuine web forms for collecting password, presence of E - commerce sites with disabled
enciphering software Considering all above the Implementation and further deployment of
Encryption Algorithms becoming more vital and actual for every type of application or web service.

The project area is a Cryptography and Information security. As nowadays most of services
becomes electronic, bank needs to store information in electronic format, provide online
transaction, all online card service providers host online transaction numerous number of times.
There should be a way to safely store such information and despite of granting access of 3rd parties
this information should be not deciphered. Cryptographic Algorithms can solve this issues. Their
main function is to convert given information which is Plaintext(usually it is the entire form of data,
e.g. password) to sequence of character which are completely differs from entire data. This
enciphered data can be stored in database, host server and if a 3rd party entity will gain access to
this data, he will not be able to recover it back to entire form, as he don’t know if the data he gained
access to is enciphered by hashing Algorithm, encryption Algorithm. The end result of Encryption
Algorithm (how data looks after Encryption) differs from other similar Algorithms, Hashing
function results due to appliance of different computation blocks, formulas. And mostly the 3rd
party entity must therefore to detect what enciphering Algorithm was used on server, it requires
testing of sample data by numerous enciphering Algorithms and Key’s which is almost impossible.
And nowadays the presence of Encryption in any computer system (application/site/server) is an
important feature to distribute and use this system in real life. And currently despite of appliance of
any computer system or application the embedding of Encryption Algorithm is a vital part. The aim
of diploma work to specify the set of most secure Encryption Algorithm and Implement them in
Microsoft Visual Studio environment on C# Programming language. Someone will say that
presence of secured network, private VPN are already enough to provide security from 3rd parties
entities.But what if this level of securities are already bypassed on network layers, the core
importance to provide security on application layer and make information visible only by certain
authorized entities. Usually the most of online attacks are intended on web servers/e-commerce sites
as mostly the transmitting packets are not enciphered, it’s easy to deploy not authentic links with
forms for entering credit card numbers, data to collect such information. This cyber attacks intended
on collection of data are costly, as in USA at 2014 the loss of E-commerce market was reached up
to 20.8 million $. [1] As most of users are still uses ‘dictionary’ passwords, weak
passwords(password that contains similar characters) the deciphering of stolen database are
becoming time efficient, since the sample data are covered from dictionary and it minimize the time
of hacker needed to decipher data. The target of hackers are considered mostly on credit card

11

information, due to easy deployment of not genuine web forms for collecting password, presence of
e-commerce sites with disabled enciphering software. Therefore between October and May of
2013-2014 a 350000 card information and log in information of 233 million customers of online
retail sector in USA was stolen. [1] Considering all above the Implementation and further
deployment of Encryption Algorithms becoming more vital and actual for every type of application
or web service.

REFERENCES
1. The Heritage Foundation, “Cyber Attacks on U.S. Companies in 2014 By Riley Walter,

(27" October 2014). URL: http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-
companies-in-2014

2. Federal Information Processing Standards Publication, “Advanced Encryption Standard”,
(26" November 2001). URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3. Serpent home page, “A Candidate Block Cipher for the Advanced Encryption Standard”,
By Ross Anderson, Eli Biham and Lars Knudsen, (24" March 2001). URL:

http://www.cl.cam.ac.uk/~rjal4/Papers/serpentcase.pdf

4. Wikipedia online encyclopedia, “Efficient implementation of Serpent Encryption
Algorithm”. URL:

https://ru.wikipedia.org/wiki/Serpent

5. Royal Holloway University of London, “The Cryptoanalysis of FEAL-4 with twenty
choosed Plaintexts”, By Sean Murphy. URL:

http://www.isg.rhul.ac.uk/~sean/feal.pdf

6. E-nigma Encryption Systems, “RSA Encryption Algorithm”. URL:

http://www.e-nigma.ru/stat/rsa/

7. The University of Auckland, New Zeland, Department of Computer

Science, “Dijkstra Algorithm”, By John Morrison. URL:

https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html

8. Wikipedia online encyclopedia, “Kruskal Algorithm”. URL:

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

9. Wikipedia online encyclopedia, “Prima Algorithm”. URL:

https://en.wikipedia.org/wiki/Prim%27s_algorithm

10. Berkeley University, Electrical Engineering & Computer Sciences, “Disjoint sets”, (16"
April 2014). URL:

https://www.cs.berkeley.edu/~jrs/61b/lec/33

11. UCI, Donald Bern, School of Information & Computer Sciences, “Breadth first search and
Depth first search”, (15" February 1996). URL:

https://www.ics.uci.edu/~eppstein/161/960215.html

12. Kapro, Trust and Safe Electrics, “Example of light level computation”, URL:
http://www.kapro.ua/articles/15/

13. National Security Agency of the United States of America, “Suite B Cryptography”, (25"
September 2014). URL:
https://www.nsa.gov/ia/programs/suiteb_cryptography/

14. Karazhat consulting, “Social tax, contributions”. URL:
http://www.karazhat.kz/articles/sotsialniy-nalog

12

http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014
http://www.heritage.org/research/reports/2014/10/cyber-attacks-on-us-companies-in-2014
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpentcase.pdf
https://ru.wikipedia.org/wiki/Serpent
http://www.isg.rhul.ac.uk/~sean/feal.pdf
http://www.e-nigma.ru/stat/rsa/
https://www.cs.auckland.ac.nz/software/AlgAnim/dijkstra.html
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://www.cs.berkeley.edu/~jrs/61b/lec/33
https://www.ics.uci.edu/~eppstein/161/960215.html
http://www.kapro.ua/articles/15/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.karazhat.kz/articles/sotsialniy-nalog

13

